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bstract

Environmental justice advocates in the US and internationally have argued that hazardous materials industries are a source of significant
ommunity disruption and environmental hazard. Few of these studies, however, have examined firms’ accident frequencies or how accidents are
istributed across metropolitan regions. This research argues that accident frequencies differ significantly among firms, and they are an important

art of understanding industries and their distribution within metropolitan regions. The accident records of the risk management plan (RMP)
acilities in southern California provide an illustration for the discussion. Statistical tests demonstrate that previous accident counts correlate with
uture counts. The research heightens the usability of the existing accident record for local governments in the US.

2007 Elsevier B.V. All rights reserved.
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. Introduction

In recent decades, technical risk assessment as a process has
ecome contested as communities resist the nearby location of
ew industrial land uses, and increasingly, question the safety of
xisting industry. Environmental justice advocacy and research
ave demonstrated that polluting facilities are clustered geo-
raphically near impoverished communities and communities
f color [1–4]. In studies of environmental injustice and land
se, analysts have been primarily concerned with the geographic
ocation of polluters relative to residential populations by race,
lass, and ethnicity [2,5–14]. The authors within this field of
esearch assume, for the most part, that facility locations provide
good proxy for where toxic and hazardous emissions occur in
rban geography. The practice reflects the information limits for
nalysts working at the regional scale, as full risk assessments
re seldom available for all the hazardous materials firms within
ny given US region.
However, past accident frequencies and consequences are
lso available to those who wish to examine environmental injus-
ice. Large-scale disasters, such as those that have occurred at
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hopal, Chernobyl, Mexico City, Enschede, and Toulouse serve
s reminders that accidents can endanger nearby populations in
ddition to the everyday, chronic emissions that can come from
earby polluters. Major accidents are infrequent and difficult to
redict, but in this manuscript I demonstrate that the accident rate
rom 1987 to 1995 is a strong correlate of the accident rate from
995 to 1999 in the Los Angeles region. Thus, past accident rates
re reasonable predictors of future accident rates. The empirical
ata record on accidents can further be used to construct statisti-
al distributions of accident frequencies for individual facilities.
ith these distributions, it is possible to create a space-time

eography of accident frequencies which can then be mapped
long with human populations for land use studies and by race,
lass, and ethnicity for environmental justice assessment. These
an also be weighed against potential consequences to derive a
implified understanding of industry within regions.

Throughout this manuscript, I present the accident and
egional data for four counties in southern California in the
nited States: Los Angeles, Orange, San Bernardino, and
iverside counties. There are large differences in the acci-
ent frequencies among refiners in southern California during

y case study time period from 1987 to 1999: Mobil had 21

ccidents with recorded off-site consequences; Unocal had 18,
ltramar 16, Texaco, Shell 7, Chevron 10, and Arco 23. These

efineries are located in and around Torrance, Carson, Wilm-
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ngton, El Segundo, and Long Beach in southern California.
ow should local government officials and community members

egard these differences in the number of past accidents? As sim-
le artifacts of stochastic processes? As proof some refineries
re better than others at containing spillovers from their pro-
esses? A sign that perhaps residential land uses and roads are
rowing too close to some, or all, of these facilities?

To be clear, I do not suggest accident frequencies as a
eplacement for risk assessment; nor do I advocate ignoring acci-
ent consequences in analysis. Past accident frequencies are an
mperfect proxy for probability, and they do not capture conse-
uences. However, data availability often makes using formal
isk assessments or modeled accident consequences infeasible
or regional geographic analysis. Major accidents are infrequent;
reaking major accidents into particular consequences makes
he events through time even more sparse and, therefore, nearly
mpossible to test for patterns in time or geography. Rather, in
his manuscript, I analyze the frequency of all accidents that have
ad off-site consequences. Even if imperfect, regional analyses
f environmental injustice and future land use decision-making
enefit from accident information, even when it is approximate,
egarding where accidents have been more frequent within a
etropolitan region.

. Why accident frequencies?

Reduced to a simple-minded characterization, risk assess-
ent weighs the probability of an accident against the potential

onsequences: from there, a spectrum of risk representa-
ion emerges where high probability, high-consequence events
ortend greater potential problems than low-probability, low-
onsequence events, and so on. Accident frequencies enter into
robability calculations: how often something has happened in
he past qualitatively reveals something about its probability.

As we examine the previous data record, research has demon-
trated that it is possible to use the number of small accidents as
redictors of major accidents at industrial sites [15]. Even with
ver a decade of data on major accidents in the United States,
his area of analysis is hampered by the sparseness of the data
ecord and the comparatively low frequency of major accident
vents. Based on the existing data, it is very difficult for local
ommunities to discern whether a facility has never had a major
ccident because (a) the processes are straightforward, the onsite
afety culture is exemplary, or the processes and materials are
omparatively safe or whether (b) none of the former is true, but
othing has, thus far, resulted.

In the Los Angeles region, 121 members of the public were
njured in the Los Angeles region in major hazardous materi-
ls incidents. All of these injuries occurred in four releases. In
act, two releases were responsible for over 100 injuries. On 11
ovember, 1990 at 9:00 in the morning (rush hour), 98 pounds of
ydrogen sulfide gas escaped from the Shell refinery in Carson,
njuring 60 members of the public. The second largest number

f injuries, 49, happened as a result of a sodium hypochloride
elease from Happy Health Spas in Torrance in November 1991.

These two incidents provide an interesting contrast based just
n the data record. The Shell refinery is a large facility holding
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arge amounts of comparatively volatile chemicals and onsite
taff. In contrast, Happy Health Spas appears in the data record
nly once. Unlike the professional materials specialists (usually
ngineers) listed as the contact person for most releases in the
ccident record, a secretary at the Happy Health Spas is listed as
he main facility contact. Also, the first response listed in the data
as to call 911 rather than engage in on-site first response, which

uggests the facility staff and management were not trained for
n-site measures.

A firm’s accident record demonstrates both something about
he hazardous nature of processes and materials and the firm’s
apacities and practices. While fault-tree and other ex post anal-
ses can reveal much about what happened to cause these
ccidents, the most serious release events in the recent his-
ory of Los Angeles demonstrated really different institutional
ontexts—things that outsiders to the industries can be expected
o know little about, except from industry and government
eports. For outsiders, the rigor and integrity of information from
ndustry represents yet another source of uncertainty.

Process safety specialists have derived methods for compar-
ng accident frequencies, and it is possible to see if a given
acility is outside the industry norm [16]. But for planners and
nvironmental justice advocates, where accidents occur is a very
ifferent question than explaining why a given facility has the
ccident record it has. Rather, these groups seek reasonably
ccurate geographic representations of hazardous materials, and
hat the urban geography tells us about the potential space-time

onnections between hazards and human populations. This type
f information, while imperfect, creates a fuller understanding
f how problems are distributed among groups and across urban
eography, particularly for those who do not have access to the
ame level of data or expertise – or trust in experts and their data
that industries and regulators do.
Given the issues about information quality, outsider analysts

ace some tough choices. They can attempt to generalize across
ndustries (i.e. the average rate per unit operation time of major
ccident events), or they can generalize across facilities within a
pecific industry (i.e. the accident frequency per unit operation
ime among petroleum manufacturers). Another option is to use
he empirical record even though it counts only places where
ccidents have happened. Researchers on environmental justice
ave used primarily spatial measures to locate where industry is
nd what it has done, including the everyday consequences of
perations and the consequences of extreme events. The loca-
ions used in these analyses tend to be static, marked solely
s locations or location points marked with emission volume
ata. A perhaps more productive approach would be to reflect
vent uncertainties – without necessarily trying to explain them –
ased on the empirical data record throughout urban geography.

.1. Local accident data

In order to take a look at major accidents – accidents that

ave caused injuries, evacuations, or deaths outside of the facil-
ty – I use two datasets from the U.S. Environmental Protection
gency: risk management plan data and accidental release

nventory program data. The clean air act amendments of 1990
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Table 1
Information in the ARIP database

Date/time
Quantity released
Medium affected
Costs (facility or public)

Deaths
Injuries
Release duration
Environmental damage
Type of release
Location of release

Cause
Number evacuated or sheltered
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andated risk management plans. These amendments required
he EPA to establish regulations and handling guidance for facil-
ties that might have potentially high off-site consequences, such
s those that handle extremely hazardous substances or very high
olumes.

The act requires that RMPs outline the type and volumes
f material used in industrial processes, the potential effects of
n accidental release, and the facility’s emergency preparation.

hile the region has over 12,000 facilities holding hazardous
aterials permits of various types, only 178 facilities in Los
ngeles County had to prepare RMPs. Orange County had only
6, while Riverside and San Bernardino Counties had 52 and
6, respectively.

For homeland security reasons, access to much of the infor-
ation from the most recent RMPs was limited primarily to

gency researchers at the time of this writing. The EPA classifies
he modeled off-site consequences, so that those are unavailable
or outside researchers and community members. Therefore,
nformation about plumes or possible exposure areas were not
vailable. However, the facilities’ five-year accident records
ere available, including data on those accidents that caused
ff-site injuries, deaths, and evacuations.

Also, Fig. 1 displays some of the facilities’ data. Volumes
re shown in histograms, rugplots, and the empirical cumulative
istribution function (ecdf). The ecdf or empirical cumulative
istribution of a sample, Fn(y), is the proportion of observations
ess than or equal to (y). In Fig. 1, the top histogram and ecdf
efer to the entire dataset. Because of the extreme skew in the
istribution, it is difficult to glean any information about the
rms handling less than 200,000 pounds of materials.

To address this problem, the second row of graphics in Fig. 1

isplays the distribution of the data for firms handling less than
00,000 pounds of a substance (the first category in the first fig-
re). Even in this subset of the data, the distribution is skewed
oward the lower values. The distribution of the subset is only

E

1
o

Fig. 1. Chemical volumes
gencies responding
hemical name

lightly less skewed than for the complete data set. This distri-
ution is common among virtually all of the volume variables
nd datasets.

Among the RMP firms, most handle only one chemical in
arge volume; 113 firms handle high volumes of chlorine, while
0 handle ammonia. Thus, the RMP data describe facilities
ith some information on accidents. By contrast, the US EPA

ompiled the accidental release information program (ARIP)
atabase in order to identify the causes of accidental releases.
n order to gather the ARIP data, the EPA examines data from
he emergency response notification system (ERNS) for on-site
eleases that either resulted in causalities, off-site consequences,
r environmental damage. The data are organized by spill, not
y facility, but the facilities have good address information. The

PA has collected ARIP data since 1987.

Table 1 contains a summary of the most relevant data. From
986, the ARIP data were collected on releases that caused death
r injury; involved 1000 pounds or more of a hazardous sub-

at RMP Facilities.
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Table 2
Guide to statistical terms

Term Definition

Bayesian Approach based on the theory that past
event data can be used to update or infer
probabilities

Cox proportional hazards model Model used to describe how an event
occurs over time

Gelman and Rubin Test Test statistic that indicates whether
MCMC simulations have converged on a
stable distribution

Gibbs sampling An algorithm that repeatedly generates
samples from a joint probability
distribution; an MCMC method

Maximum likelihood estimator Method used to fit model parameters
Monte Carlo Marko Chain Algorithm for repeatedly sampling from

a probability distribution
Partial log-likelihood function Method for maximum likelihood

estimation
Posterior distribution The distribution that results from

multiplying the prior distribution times
the likelihood function

Prior distribution Distribution that describes existing
beliefs about the phenomenon
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P
given accident rate for a given facility that approximates the true
rate (λ), and the distribution of accident rates. The estimation

Table 3
Nomenclature

Symbol Definitions

t General definition of the time that elapses
between events at a particular firm: time
measured in months

δ Event that marks an interruption in the glow of
time without accidents

ai Time without an accident for a given facility I
ci Accident event at a given facility i
Λ “True” accident rate
λ Coefficient estimates on variables X
L. Schweitzer / Journal of Haz

tance with a reportable quantity (RQ) of 1, 20, or 100 pounds,
r the release involved 10,000 pounds or more of a hazardous
ubstance with an RQ of 1000 or 5000 pounds; was the fourth
hrough the tenth release in a 23-month period; or involved
n extremely hazardous substance according to US hazardous
aterials regulations.
The ARIP data record all the off-site consequences associ-

ted with the releases. During the 12-year time period, there
ere no fatalities among nonemployees reported in the ARIP
atabase. There were, as mentioned earlier, 121 injuries. Less
erious than injuries to the public, but disruptive and troubling
o communities nonetheless, are evacuations and shelters due
o industrial activities. From 1987 to 1999, 1551 people were
vacuated because of on-site hazardous materials releases in
os Angeles. One incident accounted for 1000 out of the 1551
eople who were counted as evacuees.

On the one hand, the risk management plan data marks those
acilities that, according to regulatory agencies, represent possi-
le sources of serious off-site consequences. By contrast, the
ccidental release information program data records serious
eleases that have actually occurred. Using the risk management
lan data alone in the analysis would limit release informa-
ion to the last 5 years. The risk management plan data report
acility operating characteristics but not much about accidents.
imilarly, the accidental release information program database
escribes accidents, but very little about the facilities them-
elves. For this analysis, I therefore use the two datasets together
ith caution. By applying event data (ARIP) to the facilities
ata (the RMP data), it is necessary to assume that the accident
requencies will reflect improvements that occur in safety over
ime, all else equal.

.2. Simple frequency models

If the available inventory of major releases may not cover a
ufficient time period to derive the accident rate (Λ) due to the
omparative infrequency of major spill events, then a Bayesian
pproach makes sense. The accident or hazard rate can be theo-
ized as a point process in time, such as with hazard models.
azard regression models are widely used in medical insur-

nce, employment, and accident analysis research. The models
re designed specifically for analyzing time-to-event data, like
ccidents. Table 2 provides a definition of statistical terms for
hose who may not be familiar; Table 3 is a summary of the
omenclature used throughout the manuscript.

It is possible to define the time-to-accident release as
ti, δi, xi) ∀i = 1, . . . , n, where ti is the observed time without
n accidental release, δi a censoring variable (like a spill), and xi

s a vector of coefficients associated with facility i. In the case of
firm’s accident frequencies, ai denotes a string of time without
n accident event, and ci represents the random time at which
he data are censored in time. Then,

δ = 1, when a ≤ c
δ = 0, when a = c or when t = a

For a particular facility, a denotes a string of time without an
vent, and c represents the random time at which the observations

X
h
R

pearman’s ρ A nonparametric test of correlation

re censored. These discrete units of time allow me to further
efine the problem, accident frequency, in terms of events per
nit time, with N(t) as the number of accident events up to time
, dt as a small increment of time, and o(dt) as a much smaller
artition of dt such that o(dt)/dt → 0 when o(dt) → 0. Thus,

(t + dt) − N(t) =

⎧⎪⎨
⎪⎩

1, with probability λ(t)dt

0, with probability 1 − λ(t)dt

> 1, with probability o(dt)

(t + dt) − N(t) is simply the number of events that occur
etween t and t + dt. This formulation comes from work done by
awitan [17]. The goal is to derive a likelihood associated with a
i Vector of variables X
Computed hazardousness measure

(ti) Baseline frequency; mean frequency, industry
rate, or rate derived from desired percentile
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Table 4
Variables for frequency model

Betas Variables (Xi) Range Mean Spearman’s ρ

β1 Previous reported spillsa 1–21 0.0235 0.7748**

β2 Full time employees 4–6700 982.9 0.03
β3 Hazard scoreb 0–2 0.832 0.4548**

β4 Number of operations 1–5 1.22 0.7048**

** Significant at 0.001.
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or the accident frequency follows the following model:

i = p(t; Xi) =
n∏

i=1

{
exp(βTxi)∑
j ∈ R(ti)(β

Txj)

}δi

(1)

here Xi is a vector of covariates associated with a given facility
at time t. Eq. (1) is a common form of the Cox proportional
azards model [18]. Note R(ti). This is a baseline accident fre-
uency per unit time, applied to all facilities that hold hazardous
hemicals, and it is the mean frequency for all facilities in the
ample (0.0012). All frequencies in this analysis are calculated
ccording to month and then multiplied by a thousand to avoid
he clutter of scientific notation. With including this measure, the
verall model of frequencies will overpredict the accident rate.
ere, β represents a vector of regression parameters, which does
ot include an intercept. Rather, the baseline hazard is covered
y R(ti). Li is always positive due to the exponential functional
orm.

The covariates contribute to location frequency exponentially
ather than additively. The MLE estimators of β are obtained
ia a partial log-likelihood function. The MLE estimates of β

re obtained by maximizing the partial log-likelihood function
(β) = ln L(β). Formally stated, maximize:

(β) =
n∑

n=1

δi(β
Txi) −

n∑
i=1

δi ln

⎧⎨
⎩

∑
j ∈ r(ti)

exp(βTxi)

⎫⎬
⎭ (2)

.3. Covariates

There are limited data available for facilities, and the data
vailable are often difficult to combine across facilities because
ifferent chemical and different processes are so unique. How-
ver, the descriptive analysis revealed that a couple of variables
orrelate with previous spills recorded in the accidental release
nformation program data and the risk management plan data.

One of these potential factors (xi) is facility hazardousness.
t is difficult to compare different types of industrial chemicals
ecause the volumes and the hazards they pose are so different.
lliott et al. [19] created a rank measure of hazardousness for

heir environmental justice study. The measure is intended to bet-
er reflect differences in manufacturing scale and hazardousness.
hey create a variable that reflects both the volume and threshold

evel of the materials handled or stored at each facility:

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if chemical is kept at threshold levels;

1, if chemical is kept at twice the threshold levels;

2, if two or more chemicals are kept at twice the

threshold level; or one chemical is kept at four

times the threshold level

Threshold scores were calculated for the 296 facilities of the
isk management plan database. The threshold levels for each

egulated chemical are inversely proportional to the hazardous-
ess of the chemical, as measured by volume or weight. Clearly,
his is a convention and an approximation. Not all hazards are
eadily understood according to amounts. Nonetheless, the h

f
s
i
q

a Data compiled by the author from Accidental Release Information Program
ata.
b Data compiled by the author from Risk Management Program Data.

easure provides a useful way to begin exploring a facility’s
requency as a function of the volume and type of materials on
ite. In calculating h, several facilities in Los Angeles did not fit
ell into this measure, such as the petroleum refineries. These
ay use far more than two chemicals or may use three or four

hemicals in numerous combinations and in multiple processes.
nother major facility poorly represented using h is an inter-
odal storage facility in San Bernardino. This facility stores
ell over fifty chemicals in various forms in high volumes. The
otential hazardousness from the facility – to the extent that h is
measure of hazardousness potential – can be understated using

his simple measure.
The spill count per month for 1995–1999 is the dependent

ariable. Table 4 summarizes the list of variables tested as cor-
elates. A history of spills from 1987 to 1995 had the highest
orrelation with spills from 1995 to 1999. Two other possible
orrelates may similarly be good predictors of empirical count
f spills reported: (1) the number of full-time employees (FTEs)
nd (2) the number of industrial processes on-site. Both could
e proxies for firm size or professionalism; FTEs might reflect
ifferences between firms, such as the Happy Health Spas exam-
le, where fewer FTEs reflect a paucity of onsite professional
taff. However, FTEs had no significant correlation. The hazard
core and the number of operations were both correlates, but
hey correlate with each other more than either correlate with
he accident rate. The strongest correlate of future accidents are
revious accidents.

The data included in the likelihood model are those significant
esults from Table 4: previous spills and hazard score. The num-
er of operations could be used, or the just the previous accident
ate. The priors for the coefficients are assumed to derive from
he uniform distribution. The samples were drawn using a Gibbs
ampling algorithm in WinBUGS [20]. The Gibbs method sam-
les any one of the variables conditioned on the others. MCMC
hains, as part of the Gibbs sampling method, simulated over
000 iterations, and the first 1000 are discarded to allow for the
hains to converge. The simulations were tested for convergence
sing the Gelman and Rubin test with the CODA software.

The resulting distributions for per-month frequency for the
igh-probability facilities can be contrasted with low probabil-
ty facilities. Fig. 1 shows a sample of boxplots of the estimated

requency distributions for selected facilities. Due to space con-
traints in the graphic, the firms are lettered. Parameter estimates
llustrate the considerable uncertainty associated with the fre-
uencies. Nonetheless, differences in the frequency distributions
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Fig. 2. Frequency distributions for a selection of both high- and low-frequencies
firms.
L. Schweitzer / Journal of Haz

merge between facilities; these are differences that can be
apped through time and space. Some have an empirical track

ecord that indicates they have had problems in the past. It does
ot mean they were negligent, and it does not mean that firms
hat have not had accidents yet will never have one. But it does
how that stable distributions emerge, given that accidents are
airly decent predictors of future accidents. A city could do worse
han look at past accident locations as a proxy for where events
re comparatively more likely within the region in the future
Fig. 2).

In looking at the simulated distributions, the mean consis-
ently overpredicts accident frequencies for facilities that have
ad no accidents (due to the inclusion of a baseline). The mean
requency from the simulations tends to underpredict for only
out of the 176 firms analyzed with these data. If the analyst
anted to pursue a strictly precautionary rate, it might make

ense to go with the value associated with the 90th percentile,

ll of which overpredict the empirical rate from 1994 to 1999.
ny point in the calculated distributions may be matched with
ther data, as in Fig. 3, which maps mean frequencies for the
isk management firms in the four-county area.

Fig. 3. Mean frequency levels mapped
 with percent Latino population.
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Clear geographic and, therefore, socio-demographic differ-
nces emerge in this map—a useful addition to comprehensive
lanning discussions about either environmental justice or future
and (re)development plans. Los Angeles has been studied
erhaps more than any other region in studies of environ-
ental injustice [21]. Those studies consistently highlight a

how a large cluster of hazardous materials handlers in the
oyle Heights/Commerce/Industry areas Los Angeles. The
igh-consequence and high-frequency firms from the RMP data
re far less clustered. Although there is one high frequency
rm in the Boyle Heights/Commerce/Industry area, there are

wo high-frequency, high-consequence firms in suburban San
ernardino that previous environmental justice studies have not
iscussed.

Based on these calculations alone, those outside the indus-
ries cannot tell if the high frequencies associated with the two
rms in San Bernardino are due to high frequencies from the
tate of the practice in those industries, which I will not dis-
lose to honor security goals. We also cannot tell whether these
requencies are due to ongoing problems at the facilities. Their
ifferences are, however, meaningful descriptions as municipal-
ties and local communities consider future land use decisions
urrounding those firms.

. Closing remarks

This analysis illustrated how simulated distributions should
udge land use studies and environmental justice efforts in the
S into greater awareness of the differences in facility accident
erformance over time. It is designed particularly to illustrate
he usefulness of estimating distributions to understand the mean
nd upper and lower frequency values for accident probabilities
n mapping facilities throughout metropolitan regions. These
eographic, time-based estimates may be particularly useful for
specially those in the US who have ready access to prior acci-
ent data, but little access to full risk assessments for the facilities
n their regions.

Simple models and correlation analysis demonstrated how
ven though such accidents are rare, past events are a respectable
f partial predictors of future event locations. If outsiders to the
ndustry are looking for simplistic proxies for how industries
nd their associated characteristics manifest within the urban
eography, they could do worse statistically than to use where
ccidents have happened in the past. In addition, the conse-
uences of these past accidents similarly contribute to a fuller,
f simplified, understanding of the urban geography of major
ccidents.

For those who want to understand the geography of hazards,
istory matters as well as geography. US local planning organi-
ations have not typically had the institutional ability to pursue,
etroactively, greater land use buffers between industries and

uman populations. The results that I show here give localities a
artial empirical justification for pursuing performance-related
uffers for industries within the rubric of land use planning.
s metropolitan regions have experienced high levels of pop-

[

[

s Materials 156 (2008) 44–50

lation growth and competition for scarce housing and land,
ressures to develop land near existing industries have increased.
strong push in sustainability and land use planning similarly

rgues for redeveloping industrial land, which may place res-
dences and commercial areas closer to the high-consequence,
igh-frequency facilities I examine here than many outsiders to
ndustry may realize unless infrequent events are studied.
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